Biomolecular Network-Based Synergistic Drug Combination Discovery
نویسندگان
چکیده
Drug combination is a powerful and promising approach for complex disease therapy such as cancer and cardiovascular disease. However, the number of synergistic drug combinations approved by the Food and Drug Administration is very small. To bridge the gap between urgent need and low yield, researchers have constructed various models to identify synergistic drug combinations. Among these models, biomolecular network-based model is outstanding because of its ability to reflect and illustrate the relationships among drugs, disease-related genes, therapeutic targets, and disease-specific signaling pathways as a system. In this review, we analyzed and classified models for synergistic drug combination prediction in recent decade according to their respective algorithms. Besides, we collected useful resources including databases and analysis tools for synergistic drug combination prediction. It should provide a quick resource for computational biologists who work with network medicine or synergistic drug combination designing.
منابع مشابه
Neighbor communities in drug combination networks characterize synergistic effect.
Combination therapies are urgently needed for optimal clinical benefit, but an efficient strategy for rational discovery of drug combinations, especially combinations of experimental drugs, is still lacking. Consequently, we proposed here a network-based computational method to identify novel synergistic drug combinations. A large-scale drug combination network (DCN), which provides an alternat...
متن کاملA Network Target-based Approach for Evaluating Multicomponent Synergy
Evaluation of multicomponent synergy is a critical point in current drug combination studies. However, it is still an ongoing challenge to prioritize the synergistic combination from various pharmacological agents in a high throughput manner. Here we proposed a network target-based approach termed NIMS (Network target-based Identification of Multicomponent Synergy), and showed that NIMS can not...
متن کاملConceptual Knowledge Discovery in Databases for Drug Combinations Predictions in Malignant Melanoma
The worldwide incidence of melanoma is rising faster than any other cancer, and prognosis for patients with metastatic disease is poor. Current targeted therapies are limited in their durability and/or effect size in certain patient populations due to acquired mechanisms of resistance. Thus, the development of synergistic combinatorial treatment regimens holds great promise to improve patient o...
متن کاملTraditional Chinese Medicine-Based Network Pharmacology Could Lead to New Multicompound Drug Discovery
Current strategies for drug discovery have reached a bottleneck where the paradigm is generally "one gene, one drug, one disease." However, using holistic and systemic views, network pharmacology may be the next paradigm in drug discovery. Based on network pharmacology, a combinational drug with two or more compounds could offer beneficial synergistic effects for complex diseases. Interestingly...
متن کاملSynergistic and Antagonistic Drug Combinations Depend on Network Topology
Drug combinations may exhibit synergistic or antagonistic effects. Rational design of synergistic drug combinations remains a challenge despite active experimental and computational efforts. Because drugs manifest their action via their targets, the effects of drug combinations should depend on the interaction of their targets in a network manner. We therefore modeled the effects of drug combin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016